领取MOLI红包

謝介銘教授 - 系所成員 - 國立中央大學化材系
WNZ中文网

你的位置:Bifrost 中文站 > WNZ中文网 >

謝介銘教授 - 系所成員 - 國立中央大學化材系

发布日期:2025-01-04 15:04    点击次数:92

電話:34220 信箱:[email protected] 研究室:工一舘 E201 實驗室:分子與工程熱力學實驗室 E131A 學歷:國立台灣大學化工博士 研究領域:發展與應用以第一原理為基礎之熱力學模型、預測與量測複雜流體系統之熱力學性質與相平衡   研究背景 化工熱力學在工程上的應用主要為提供化工製程中所處理的各項物流之熱力學性質的估算,這些性質對製程的設計與優化是十分重要的資訊,混合流體的基本相平衡數據,如:溫度、壓力、濃度、體積等,是化學工程師在設計及改善化工程序的主要依據,透過實驗量測獲得的相平衡數據是最重要也是最廣為接受的來源,然而在缺少所需實驗數據時,則需要利用預測型熱力學模型來估算所需之熱力學數據,因此,擁有量測所需之相平衡數 據與發展一個值得信賴的預測型熱力學模型是同等重要的。 本實驗室主要利用理論計算、分子模擬、實驗觀察與量測等方式進行與化工熱力學相關之基礎與應用研究。目前我們主要的研究方向如下: 發展以第一原理為基礎之熱力學模型 應用已開發之熱力學模型預測複雜流體之相行為,如:超臨界流體、有機藥物之溶解度等等。 量測固體溶質於超臨界二氧化碳中之溶解度 論文著作 S. H. Khudaida, Y.-M. Chen, Y.-F. Zheng, C.-M. Hsieh*, C.-S. Su*. Solid solubility measurement of haloperidol in supercritical carbon dioxide and nanoparticle production using the rapid expansion of supercritical solutions process, J. Supercrit. Fluids 2023, 192, 105785. Y.-C. Hung, C.-M. Hsieh, H. Machida, S.-T. Lin, Y. Shimoyama*. Modelling of phase separation solvent for CO2 capture using COSMO-SAC model. J. Taiwan Inst. Chem. Eng. 2022, 135, 104362. G. Sodeifian*, C.-M. Hsieh, R. Derakhsheshpour, Y.-M. Chen, F. Razmimanesh. Measurement and modelling of metoclopramide hydrochloride (anti-emetic drug) solubility in supercritical carbon dioxide. Arab. J. Chem. 2022, 15 (7), 103876. Y.-C. Hung, C.-M. Hsieh, H. Machida, S.-T. Lin, Y. Shimoyama*. Phase equilibrium modeling of mixtures containing conformationally flexible molecules with the COSMO-SAC model. J. Mol. Liq. 2022, 356, 118896. H.-W. Wang, C.-M. Hsieh*. Prediction of solid solute solubility in supercritical carbon dioxide from PSRK EOS with only input of molecular structure. J. Supercrit. Fluids 2022, 180, 205446. K.-C. Wu, C.-M. Hsieh*, B. K. Chang*. First principles calculations on lithium diffusion near surface and in bulk of Fe-doped LiCoPO4. Phys. Chem. Chem. Phys. 2022, 24 (2), 1147-1155.  Y.-C. Hung, C.-M. Hsieh, H. Machida, S.-T. Lin, Y. Shimoyama*. Unveiling the mechanism of CO2-driven phase change in amine + water + glycol ether ternary mixture. J. Taiwan Inst. Chem. Eng. 2021, 131, 104143.  Y.-T. Hsiao, C.-M. Hsieh, T.-M. Yang, C.-S. Su*, Preparation of microcellular foams by supercritical carbon dioxide: A case study of thermoplastic polyurethane 70A. Processes 2021, 9 (9), 1650.  S.-N. Kao, Y.-C. Hung, Y. Shimoyama, C.-M. Hsieh*, B. K. Chang*, Investigating lithium intercalation and diffusion in Nb-doped TiO2 by first principles calculations. J. Taiwan Inst. Chem. Eng. 2021, 125, 314-322. Y.-C. Hung, C.-M. Hsieh, H. Machida, S.-T. Lin, Y. Shimoyama*. Towards design of phase separation solvent for CO2 capture using COSMO-SAC model. J. Mol. Liq. 2021, 336, 116229. S.-W. Wang, S.-Y. Chang, C.-M. Hsieh*. Measurement and modeling of solubility of gliclazide (hypoglycemic drug) and captopril (antihypertension drug) in supercritical carbon dioxide. J. Supercrit. Fluid 2021, 174, 105244.  J. Patra, S.-C. Wu, I.-C. Leu, C.-C Yang, R. Dhaka, S. Okada, H.-L. Yeh, C.-M. Hsieh, B. K. Chang*, J.-K. Chang*. Hydrogenated anatase and rutile TiO2 for sodium-ion battery anodes. ACS Appl. Energy Mater. 2021, 4 (6), 5738–5746. X.-M. Wu, B. K. Chang*, C.-M. Hsieh*. Computational study on the effect of steric hindrance in functionalised Zr-based metal-organic frameworks on hydrocarbon storage and separation. Mol. Simulat. 2021, 47 (7), 565-574. C.-H. Chang, C.-M. Hsieh, C.-S. Su*. Particle size and crystal habit modification of active pharmaceutical ingredient using cooling sonocrystallization: a case study of probenecid. Cryst. Res. Tech. 2021, 56 (4), 2000182. S.-W. Wang, J.-Z. Chen, C.-M. Hsieh*. Measurement and correlation of solubility of methylsalicylic acid isomers in supercritical carbon dioxide. J. Chem. Eng. Data 2021, 66 (1), 280-289. Z.-Z. Cai, H.-H. Liang, W.-L. Chen, S.-T. Lin, C.-M. Hsieh*. First-principles prediction of solid solute solubility in supercritical carbon dioxide from PR+COSMOSAC EOS. Fluid Phase Equilib. 2020,  522, 112755. Z.-Z. Cai, C.-M. Hsieh*. Prediction of solid solute solubility in supercritical carbon dioxide with and without organic cosolvents from PSRK EOS. J. Supercrit. Fluids 2020, 158, 104735. I. H. Bell*, E. Mickoleit, C.-M. Hsieh, S.-T. Lin, J. Vrabec, C. Breitkopf, A. Jäger. A benchmark open-source implementation of COSMO-SAC. J. Chem. Theory Comput. 2020, 16 (4), 2635-2646. H.-H. Liang, J.-Y. Li, L.-H. Wang, S.-T. Lin, C.-M. Hsieh*. Improvement to PR+COSMOSAC EOS for predicting vapor pressure of non-electrolyte organic solids and liquids. Ind. Eng. Chem. Res. 2019, 58 (12), 5030-5040. H.-L. Yeh, S.-H. Tai, C.-M. Hsieh*, B. K. Chang*. A first-principles study of lithium intercalation and diffusion in oxygen-defective titanium dioxide. J. Phys. Chem. C 2018, 122 (34), 19447-19454. L.-H. Wang, C.-M. Hsieh, S.-T. Lin*. Prediction of gas and liquid solubility in organic polymers based on PR+COSMOSAC equation of state. Ind. Eng. Chem. Res. 2018, 57 (31), 10628-10639. J. Vrabec*, et. al., SkaSim – Scalable HPC software for molecular simulation in the chemical industry. Chem. Ing. Tech. 2018, 90 (3), 295-306. C.-Y. Chen, L.-H. Wang, C.-M. Hsieh*, S.-T. Lin. Prediction of solid-liquid-gas equilibrium for binary mixtures of carbon dioxide + organic compounds from approaches based on the COSMO-SAC model. J. Supercrit. Fluids 2018, 133, 318-329. R. Fingerhut, W.-L. Chen, A. Schedemann, W. Cordes, J. Rarey, C.-M. Hsieh, J. Vrabec*, S.-T. Lin*. Comprehensive assessment of COSMO-SAC models for predictions of fluid-phase equilibria. Ind. Eng. Chem. Res. 2017, 56 (35), 9868-9884. Y. M. Muñoz-Muñoz, C.-M. Hsieh, J. Vrabec*. Understanding the differing fluid phase behavior of cyclohexane + benzene and their hydroxylated or aminated forms. J. Phys. Chem. B 2017, 121, 5374-5384. Y.-H. Ting, C.-M. Hsieh*, Prediction of solid solute solubility in supercritical carbon dioxide with organic cosolvents from the PR+COSMOSAC equation of state. Fluid Phase Equilib. 2017, 431, 48-57. W.-L. Chen, C.-M. Hsieh, L. Yang, C.-C. Hsu, S.-T. Lin*, A critical evaluation on the performance of COSMO-SAC models for vapor-liquid and liquid-liquid equilibrium predictions based on different quantum chemical calculations. Ind. Eng. Chem. Res. 2016, 55 (34), 9312-9322 L.-H. Wang, C.-M. Hsieh*, S.-T. Lin*. Improved prediction of vapor pressure for pure liquids and solids from the PR+COSMOSAC equation of state. Ind. Eng. Chem. Res. 2015, 54 (41), 10115-10125. C.-M. Hsieh*, J. Vrabec. Vapor-liquid equilibrium measurements of the binary mixtures CO2 + acetone and CO2 + pentanones. J. Supercrit. Fluids 2015, 100, 160-166. C.-M. Hsieh*, S.-T. Lin, J. Vrabec. Considering the dispersive interactions in the COSMO-SAC model for more accurate predictions of fluid phase behavior. Fluid Phase Equilib. 2014, 367, 109-116 C.-M. Hsieh*, T. Windmann, J. Vrabec. Vapor-liquid equilibria of CO2 + C1-C5 alcohols from the experiment and the COSMO-SAC model. J. Chem. Eng. Data 2013, 58 (12), 3420-3429. T. Merker, C.-M. Hsieh, S.-T. Lin, H. Hasse and J. Vrabec*. Fluid-phase coexistence for the oxidation of CO2 expanded cyclohexane: Experiment, molecular simulation, and COSMO-SAC. AIChE J. 2013, 59 (6), 2236-2250. P.-K. Lai, C.-M. Hsieh, S.-T. Lin*. Rapid determination of entropy and free energy of mixtures from molecular dynamics simulations with the two-phase thermodynamic model. Phys. Chem. Chem. Phys. 2012, 14 (43), 15206-15213. C.-M. Hsieh, S.-T. Lin*. First-principles prediction of phase equilibria using the PR+COSMOSAC equation of state. Asia-Pac. J. Chem. Eng 2012, 7 (Supplement S1), S1-S10. S.-T. Lin*, L.-H. Wang, W.-L. Chen, P.-K. Lai, C.-M. Hsieh. Prediction of miscibility gaps in water/ether mixtures using COSMO-SAC model. Fluid Phase Equilib. 2011, 310 (1-2), 19-24. C.-M. Hsieh, S. Wang, S.-T. Lin*, S. I. Sandler. A predictive model for the solubility and octanol-water partition coefficient of pharmaceuticals. J. Chem. Eng. Data 2011, 56 (4), 936-945. C.-M. Hsieh, S.-T. Lin*. First-principles prediction of vapor-liquid-liquid equilibrium from the PR+COSMOSAC equation of state. Ind. Eng. Chem. Res. 2011, 50 (3), 1496-1503. C.-M. Hsieh, S. I. Sandler, S.-T. Lin*. Improvements of COSMO-SAC for vapor-liquid and liquid-liquid equilibrium predictions. Fluid Phase Equilib. 2010, 297 (1), 90-97. C.-M. Hsieh, S.-T. Lin*. Prediction of liquid-liquid equilibrium from the Peng-Robinson+COSMOSAC equation of state. Chem. Eng. Sci. 2010, 65 (6), 1955-1963. C.-M. Hsieh, S.-T. Lin*. Prediction of 1-octanol-water partition coefficient and infinite dilution activity coefficient in water from the PR+COSMOSAC model. Fluid Phase Equilib. 2009, 285 (1-2), 8-14.  S.-T. Lin*, M.-K. Hsieh, C.-M. Hsieh, C.-C. Hsu, S.-N. Huang, Reply to "Comment on "Towards the development of theoretically correct liquid activity coefficient models"". J Chem. Thermodyn. 2009, 41 (11), 1314-1316. S.-T. Lin*, M.-K. Hsieh,C.-M. Hsieh, C.-C. Hsu, Towards the development of theoretically correct liquid activity coefficient models. J. Chem. Thermodyn. 2009, 41 (10), 1145-1153. C.-M. Hsieh, S.-T. Lin*. First-principles predictions of vapor-liquid equilibria for pure and mixture fluids from the combined use of cubic equations of state and solvation calculations. Ind. Eng. Chem. Res. 2009, 48 (6), 3197-3205. C.-M. Hsieh, S.-T. Lin*. Determination of cubic equation of state parameters for pure fluids from first principle solvation calculations. AIChE J. 2008, 54 (8), 2174-2181. S.-T. Lin*, C.-M. Hsieh, M.-T. Lee, Solvation and chemical engineering thermodynamics. J. Chin. Inst. Chem. Eng. 2007, 38 (5-6), 467-476. S.-T. Lin*, C.-M. Hsieh, Efficient and accurate solvation energy calculation from polarizable continuum models. J. Chem. Phys. 2006, 125 (12), 124103.

友情链接:

Powered by Bifrost 中文站 @2013-2022 RSS地图 HTML地图

Copyright Powered by站群系统 © 2013-2024